Processing of bile salt odor information by single olfactory bulb neurons in the channel catfish.

نویسندگان

  • S H Rolen
  • J Caprio
چکیده

A chemotopic map of biologically relevant odorants (that include amino acids, bile salts, and nucleotides) exists in the olfactory bulb (OB) of channel catfish, Ictalurus punctatus. Neurons processing bile salt odorant information lie medially within this OB map; however, information as to how single neurons process bile salt odorant information is lacking. In the present report, recordings were obtained from 51 OB neurons from 30 channel catfish to determine the excitatory molecular receptive range (EMRR) of bile salt responsive neurons. All recordings were performed in vivo within the medial portions of the OB using extracellular electrophysiological techniques. Excitatory thresholds to bile salts typically ranged between 0.1 and 10 muM. The bile salt specificity of OB neurons were divided into three groups: neurons excited by taurine-conjugated bile salts only (group T), neurons excited by nonconjugated bile salts only (group N), and neurons excited by at least one member of each of the three classes of bile salts tested (group G). In addition to the conjugating group at C24 of the side-chain, OB neurons discriminated bile salts by the molecular features present at three other carbon positions (C3, C7, and C12) along the steroid backbone. These data suggest that OB neurons are selectively excited by combinations of molecular features found on the side-chain and along the steroid nucleus of bile salt molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish.

Extracellular electrophysiological recordings from single olfactory bulb (OB) neurons in the channel catfish, Ictalurus punctatus, indicated that the OB is divided into different functional zones, each processing a specific class of biologically relevant odor. Different OB regions responded preferentially at slightly above threshold to either a mixture of 1) bile salts (10(-7) to 10(-5) M Na(+)...

متن کامل

Fish smell. Focus on "Odorant specificity of single olfactory bulb neurons to amino acids in the channel catfish".

Olfactory systems serve a crucial role in kin recognition, mate selection, finding food and avoiding predators, and navigation and homing in a large proportion of invertebrate and vertebrate species. It is increasingly apparent that for many chemical cues, the olfactory system begins the process of encoding olfactory stimuli through recognition and discrimination of specific physicochemical fea...

متن کامل

Responses of olfactory forebrain units to amino acids in the channel catfish.

A paucity of information exists concerning the processing of odorant information by single neurons in any vertebrate above the level of the olfactory bulb (OB). In this report, odorant specificity to four types of L-alpha-amino acids (neutral with long side-chains, neutral with short side-chains, basic and acidic), known biologically relevant odorants for teleosts, was determined for 217 sponta...

متن کامل

Odorant-induced olfactory receptor neural oscillations and their modulation of olfactory bulbar responses in the channel catfish.

Peripheral waves (PWs) in the channel catfish are odorant-induced neural oscillations of synchronized populations of olfactory receptor neurons (ORNs) that appear after the initial approximately 500 msec of the response. The mean dominant frequency during the initial 2 sec of PW activity is approximately 28 Hz, declining to approximately 20 Hz in the last sec of a 5 sec stimulus. Recordings of ...

متن کامل

Correlation between olfactory receptor cell type and function in the channel catfish.

The olfactory epithelium of fish contains three intermingled types of olfactory receptor neurons (ORNs): ciliated, microvillous, and crypt. The present experiments were undertaken to test whether the different types of ORNs respond to different classes of odorants via different families of receptor molecules and G-proteins corresponding to the morphology of the ORN. In catfish, ciliated ORNs ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2007